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Isometry and MacWilliams Extension Theorem

Isometry

Let K be a finite field

h(x) =

{
0, x = 0;

1, else.

n a positive integer

C a subspace of Kn

The Hamming weight of x ∈ Kn

wh(x) = {i | xi 6= 0} =
n∑

i=1

h(xi ),

A linear map f : C → Kn preserving the Hamming weight

∀x ∈ C , wh(x) = wh(f (x))

is called a (linear) isometry over C .
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Isometry and MacWilliams Extension Theorem

Monomial transformation

consider (ei )1≤i≤n the canonical basis of Kn.

An isometry over the ambiant space Kn permutes the vectors of weight
one.

ei 7→ λieπ(i)

where

λi ∈ K×

π permutes {1, 2, . . . , n}.

x 7→ (λ1xπ(1), λ2xπ(2), . . . , λnxπ(n))

often called a monomial transformation of Kn.

Sn n K×
n
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Isometry and MacWilliams Extension Theorem

MacWilliams Extension Theorem

Theorem (MacWilliams, 1962)

An isometry over C ⊆ Kn extends to an isometry over Kn.

In other words, for an isometry f : C → Kn there exists a permutation π
and scalars λi ’s such that

∀x ∈ C , f (x) = (λ1xπ(1), λ2xπ(2), . . . , λnxπ(n))

Sn n K×
n res−−→ Isom(C)→ 0
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Isometry and MacWilliams Extension Theorem

Frobenius ring case

From the character theorycal proof of Ward & Wood, one deduces that
MacWilliams extension theorem works for the Hamming space over any
finite Frobenius rings.

H. N. Ward, J. A. Wood, Characters and the Equivalence of Codes, J.
Comb. Theory, Ser. A, (1996).
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Isometry and MacWilliams Extension Theorem

Homogeneous weight

The same holds for any homogeneous weight on a finite Frobenius ring :

ω(0) = 0;

If x and y are associate then ω(x) = ω(y);

There exists a constant c such that for all principal ideal I,∑
y∈I

ω(y) = c |I| .

M. Greferath and S. E. Schmidt, Finite-ring combinatorics and
MacWilliams’s equivalence theorem, J. Combin. Theory Ser. A,
(2000).

Of course, MacWilliams extension works over the Z/(4) with its Lee weight

l(0) = 0, l(1) = l(3) = 1, l(2) = 2.
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Isometry and MacWilliams Extension Theorem

MacWilliams for Lee weight

q a positive integer

l the Lee weight over Z/(q).

l(r) =

{
r , 0 ≤ r ≤ q/2;

q − r , q/2 < r < q.

Remark

Lee weight is not homogeneous for q > 4.

Do we have a MacWilliams extension statement for the Lee weight ?

A. Barra, Equivalence Theorems and the Local-Global Property,
ProQuest LLC, Ann Arbor, MI, 2012, Thesis (Ph.D.)–University of
Kentucky.
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Isometry and MacWilliams Extension Theorem

Known results, new results

In the last NCRA IV proceedings :

q = 2p + 1, p prime (Folklore).

q = 4p + 1 (Barra, 2012)

q = 2r or q = 3r (Lens, 2015)

Despite all this progress, there are glaring gaps in our knowledge : does
extension theorem holds for linear codes over Z/(q) ?

YES !
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Isometry and MacWilliams Extension Theorem

Connection with classical tools

We have two ways to prove MacWilliams extension Theorem for the Lee
weight using classical results of

1 Number Theory

2 Harmonic Analysis

The first works when the module q is primary, the second due to Sergey
Dyshko works for a general module.

I will sketch the proofs in the case of prime fields.
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Isometry and MacWilliams Extension Theorem

Extension property holds for Lee weight

Deux analogues au déterminant de Maillet C. R. Acad. Sci. Paris vol.
Ser. I, 2016

Ph. Langevin, J. Wood: The extension problem for Lee and Euclidean
weights Journal of Algebra Combinatorics Discrete Structures and
Applications Vol. 4 2 pp 207–217, 2017.

Ph. Langevin, J. Wood: The extension theorem for the Lee and
Euclidean Weight over Z/pkZ Journal of Pure and Applied Algebra,
submitted 2016.

S. Dyshko: The Extension Theorem for the Lee weight Code, Design
and Cryptography, submitted 2017 .
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Extension property

Isometry in general

Let R be a finite ring

ω a weight function on R

n a positive integer

M a submodule of Rn

ω is a real function such that ω(r) = 0 iff r = 0.

The ω-weight of x ∈ Rn

wω(x) =
n∑

i=1

ω(xi )

A linear map f : M → Kn preserving the ω-weight

∀x ∈ M, ω(x) = ω(f (x))

is called a (linear) ω-isometry over M.
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Extension property

U-monomial map

ei the canonical basis of Rn.

Again, an isometry over Rn maps ei on λieπ(i) where λi ∈ R× and π
permutes {1, 2, . . . , n}, moreover :

∀t ∈ R, ω(t) = wω(tei ) = wω(tλieπ(i)) = ω(tλi )

thus λi lies in the symmetry group of ω

U(ω) := {λ ∈ R | ∀t ∈ R, ω(λt) = ω(t)}

Definition (U-monomial transformation)

Given U a subgroup of R×, a monomial transformation with scalars in U.

Sn n Un
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Extension property

Extension Property

Definition (extension property)

We say that Extension Property holds for the pair (R, ω) when each
ω-isometry over M ⊆ Rn extends to a U(ω)-monomial transformation.

EP holds for Hamming weight on Frobenius ring

EP holds for Homogeneous weight on Frobenius ring

It looks difficult to decide if EP holds for an arbitrary weight function!
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Wood criterion
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Wood criterion

Preserving map

U be a subgroup of R×

r ∼ s if and only if s ∈ rU

Ω a set of representatives of R \ {0}
cr (x) := ]{i | xi = r}
cU
r (x) := ]{i | xi ∼ r}

A linear map f : M → Rn such that

∀x ∈ C ,∀r ∈ Ω cU
r (x) = cU

r (f (x))

is called a U-preserving map over M.
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Wood criterion

Goldberg Extension Theorem

preserving map over Kn

The U-preserving maps over Kn are precisely the U-monomial
transformations.

Theorem (Goldberg, 1980)

A linear U-preserving map extends to U-monomial transformation.

The same holds modular rings : Constantinescu, Heise, Honold (1996).

J. A. Wood.
Weight functions and the extension theorem for linear codes over
finite rings.
In R. C. Mullin and G. L. Mullen, editors, Finite fields: theory,
applications, and algorithms (Waterloo, ON, 1997), volume 225 of
Contemp. Math., pages 231–243. Amer. Math. Soc., Providence, RI,
1999.
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Wood criterion

Extensibility Property (recall)

The symmetry group of ω.

U(ω) = {λ ∈ K× | ∀x ∈ K , ω(λx) = ω(x)} 6 K×

Extension Property

We say the extension property holds for the weight ω when each
ω-isometry of Kn is the restriction of a U(ω)-monomial map.

From Goldberg Theorem, one gets a criterion.
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Wood criterion

A sufficient condition for Extension Property

wω(x) =
n∑

i=1

ω(xi ) =
∑
r∈R

ω(r)cr (x) =
∑
r∈Ω

ω(r)cU
r (x).

For all s ∈ Ω,

wω(xs) =
∑
r∈R

ω(rs)cr (x)

=
∑
r∈Ω

ω(rs)cU
r (x)

idem,

wω(f (xs)) = wω(f (x)s)

=
∑
r∈Ω

ω(rs)cU
r (f (x))

Lemma

The invertibility of
(
ω(rs)

)
r ,s∈Ω

implies the U-preservation of ω whence
Extension Property.
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Wood criterion

determinantal criterion

Let Ω a set of repretentatives for the action of U := U(ω).

Wω :=

∣∣∣∣∣∣∣∣
...

. . . ω(rs) . . .
...

∣∣∣∣∣∣∣∣
r ,s∈Ω

∆ω := det(Wω)

Proposition (Wood)

If ∆ω 6= 0 then Extension Property holds for the weight ω.

Remark

One has an analogue criterion non commutative case.

Numerical evidence for the Lee weight!
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Lee metric (Finite field case)
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Lee metric (Finite field case)

Fourier coefficient

` an odd prime

l the Lee metric of F`
U(l) = {−1,+1}
G := Ω = F`/{−1,+1} is cyclic of order `−1

2 .

Ĝ is the group of even (multiplicative) characters i.e. χ(−1) = 1.

By the Dedekind determinant formula

∆l = ±
∏
χ∈bG

l̂(χ)

where l̂(χ) =
∑

s∈G l(s)χ(s) is the Fourier coefficient of l at χ.
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Ĝ is the group of even (multiplicative) characters i.e. χ(−1) = 1.

By the Dedekind determinant formula

∆l = ±
∏
χ∈bG

l̂(χ)

where l̂(χ) =
∑

s∈G l(s)χ(s) is the Fourier coefficient of l at χ.

Philippe Langevin (IMATH, Toulon) last revision June 11, 2017. 24 / 44



Lee metric (Finite field case)

Fourier coefficient

` an odd prime

l the Lee metric of F`
U(l) = {−1,+1}
G := Ω = F`/{−1,+1} is cyclic of order `−1

2 .
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Lee metric (Finite field case)

Sophie Germain case

Proposition

Certainly, Extension Property holds for the Lee weight in the case of sure
prime module i.e. ` = 2p + 1 with p prime.

β a generator of G
χ a non trivial character
ζ := χ(β) is a primitive p-th root of unity.

The minimal polynomial of ζ is

Φp(T ) = T p−1 + . . .+ T 1 + T 0

thus

l̂(χ) =

p−1∑
k=0

l(βk)ζk

does not vanish simply because l is not constant on G .
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Lee metric (Finite field case)

Two in one

We consider the Lee and Euclidean weights :

l(t) =

{
t, 0 ≤ t ≤ `/2;

`− t, `/2 < t < `;
e(t) = l(t)2.

they share the same symmetry group

U := U(l) = {−1,+1} = U(e).

Theorem

If ` is an odd prime then ∆l 6= 0 and ∆e 6= 0.
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Lee metric (Finite field case)

Fourier coefficient of the Lee map

The quotient group

G := F`×/{±1} = {1, 2, . . . , (`− 1)/2}

is cyclic of order n := (`− 1)/2.
we want to prove :

∀χ ∈ Ĝ , 0 6= l̂(χ) =
∑
s∈G

l(s)χ(s).

It is trivial when ` = 2p + 1, p prime.

Barra proved the case ` = 4p + 1.
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Lee metric (Finite field case)

Fourier analysis

We identify Ĝ with the group of even characters of F` :

Ĝ = {χ ∈ F̂`× | χ(−1) = 1}

The Fourier coefficients of l and e are given by

l̂(χ) =
∑
x∈G

l(x)χ(x) =
∑

k<`/2

l(k)χ(k) =
∑

k<`/2

kχ(k)

ê(χ) =
∑
x∈G

e(x)χ(x) =
∑

k<`/2

e(k)χ(k) =
∑

k<`/2

k2χ(k)
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Lee metric (Finite field case)

Links between the determinants

It is easy to verify the following quadratic relation holds

l(2x)2 − 4l(x)2 =
(
l(2x)− 2l(x)

)
`.

In other words
e(2x)− 4e(x) =

(
l(2x)− 2l(x)

)
`.

On spectra

(χ̄(2)− 4) ê(χ) = (χ̄(2)− 2) l̂(χ) `.

Scholie

Let r be the smallest positive integer such that 2r ≡ ±1 mod `.

(2r + 1)
`−1
2r ∆e = `

`−1
2 ∆l.
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Lee metric (Finite field case)

basic fact for non trivial even characters

1 6= χ even and not trivial

1̂(χ) = 2
∑

k<`/2

χ(k) = 0.

The first generalized Bernoulli’s number vanishes too

B1(χ) =
1

`

∑̀
k=1

kχ(k) = 0

We want to prove that

0 6= 1

`

∑
k<`/2

kχ(k) = l̂(χ)
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Lee metric (Finite field case)

Consequence of l̂(χ) = 0 on the 2nd Bernoulli’s number

Let us observe the consequence of

l̂(χ) = 0= ê(χ), 1 6= χ, χ(−1) = 1,

on the second generalized Bernoulli’s number

B2(χ) =
1

2`

∑̀
k=1

(k2 − `k)χ(k).

2`B2(χ) = 2ê(χ)− 2l̂(χ)`+ 1̂(χ)`2

= zero.
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Lee metric (Finite field case)

Contradiction with classical fact from number theory

In number theory, there is a long story concerning the analytic
continuation of the Dirichlet serie

L(s, χ) =
∞∑

n=1

χ(n)

ns

On the one hand

−B2(χ)/2 = L(−1, χ)

On the other hand

L(−1, χ) = 0 if and only if χ is odd.

whence the determinants ∆l and ∆e do not vanish.
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Lee metric (Finite field case)

primary case

Corollary (extension property)

The Lee and Euclidean isometries are the restriction of
{−1,+1}-monomial transformations.

The same approach works in the case of a primary module

but not for a composite module!
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Dyshko criterion

Sommaire

1 Isometry and MacWilliams Extension Theorem

2 Extension property

3 Wood criterion

4 Lee metric (Finite field case)

5 Dyshko criterion
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Dyshko criterion

Additive Fourier coefficient

The additive Fourier coefficient of ω :

ω?(a) =
∑
x∈F`

ω(x)µ(ax)

where µ is the standard additive character of F`.

Note that U(ω?) = U(ω) and∑
a∈F`

ω?(a) = `× ω(0) = 0
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Dyshko criterion

change of determinant

Since ω(0) = 0,

ω̂?(χ) = τ(χ)ω̂(χ̄)

where τ(χ) is a Gauss sum

W?
ω =

∣∣∣∣∣∣∣∣
...

. . . ω?(rs) . . .
...

∣∣∣∣∣∣∣∣
r ,s∈F`

×/±1

∆ω = 0⇔ det(W?
ω) = 0
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Dyshko criterion

Levy-Desplanques dominant criterion

A strictly diagonally dominant n × n-matrix (aij) i.e.

∀i , |aii | >
∑
i 6=j

|aij |

is not singular.

Corollary

If
∀r 6= 0, ω?(r) < 0 and ω?(0) < −2 |U(ω)| × ω?(1)

then ∆ω 6= 0.
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Dyshko criterion

sketch

We consider the matrices

W?
ω =

∣∣∣∣∣∣∣∣
...

. . . ω?(rs) . . .
...

∣∣∣∣∣∣∣∣
r ,s∈F`

×/±1

∣∣∣∣∣∣∣∣
...

. . . ω?(r/s) . . .
...

∣∣∣∣∣∣∣∣
r ,s∈F`

×/±1

ω?(1) is on the diagonal

|ω?(1)| −
∑

16=r∈Ω

|ω?(r)| = −ω?(1) +
∑

16=r∈Ω

ω?(r)

The sum of the Fourier coefficients ω?(0) + ]U(ω)×
∑

r∈Ω ω
?(r) vanishes.

|ω?(1)| −
∑

16=r∈Ω

|ω?(r)| = −2ω?(1) +
−ω?(0)

]U(ω)
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Dyshko criterion

Additive Fourier coefficient of the Lee map

0 ≤ r < ` n := `−1
2 t := 2πr

`

l?(r) =
`−1∑
k=0

l(k)e it = 2
n∑

k=1

cos kt = 2n (Dn(t)− Fn(t))

where Dn is the Dirichlet kernel

Dn(t) :=
1

2
+

n∑
k=−n

e ikt =
1

2
+

n∑
k=1

cos kt =
sin(n + 1

2 )t

2 sin 1
2 t

= 0

and Fn the Fejér kernel

Fn(t) :=
1

n

n−1∑
k=0

Dk(t) =
1

2
+

1

n

n∑
k=1

(1− k

n
) cos kt =

1

2n

(
sin n

2 t

sin 1
2 t

)2
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2 t

)2
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Dyshko criterion

Lee weight satisfies the two conditions

0 ≤ r < `

n := `−1
2

First condition :

l?(r) = −2nFn(
2πr

`
)<0

Second condition :

−4l?(1) = 4

sin
`−1

2
2

2π
`

sin 1
2

2π
`

2

and

l?(0) = 2

`−1
2∑

k=1

k =
1

4
(`2 − 1)
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Dyshko criterion

second condition

We have to prove

−4l?(1) > l?(0)

and now it is very easy !

Indeed,
4

π2
`2 ∼ −4l?(1) and l?(0) ∼ 1

4
`2
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Dyshko criterion

Dyshko criterion for modular ring

consider the ring Z/(q)

ω a weight function

b a divisor of q.

write q = ab

Consider the additive Fourier coefficients of the map x 7→ ω(bx)

Fa(t) =
∑

x∈Z/(a)

ω(bx)ζtx
a

Wa(ω) =

∣∣∣∣∣∣∣∣
...

. . . ω?(rs) . . .
...

∣∣∣∣∣∣∣∣
r ,s∈Z/(a)∗/Ga(ω)

where Ga(ω) = {h ∈ Z/(a)∗ | ∀t ∈ Z/(a) wt(bht) = ω(bt)}.
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Dyshko criterion

Dyshko criterion for modular ring

Theorem (Dyshko)

Let ω : Z/(q)→ C be a weight function. If for all 1 6= a | q the matrix
Wa(ω) is non singular and

∀h ∈ Ga(ω) ∃g ∈ Gq(ω) g ≡ h mod a

then Extension Property holds for the weight ω.

Corollary

For every integer q ≥ 2 the Extension Property of the Lee weight holds
over the ring Z/(q).
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