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Isometry and MacWilliams Extension Theorem

Isometry
o Let K be a finite field @ n a positive integer
0, x=0;
e H(x) =
1, else. @ C a subspace of K"
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Isometry and MacWilliams Extension Theorem

Isometry
o Let K be a finite field @ n a positive integer
0, x=0;
e H(x) =
1, else. @ C a subspace of K"

The Hamming weight of x € K"

wi(x) = {i | % # 0} = u(x),

i=1
A linear map f: C — K" preserving the Hamming weight

Vx € C, wy(x)=wy(f(x))

is called a (linear) isometry over C.
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Isometry and MacWilliams Extension Theorem

Monomial transformation

o consider (ej)1<i<n the canonical basis of K".

An isometry over the ambiant space K" permutes the vectors of weight
one.

& — Ajer()
where
@ \ e K~
e 7 permutes {1,2,...,n}.
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one.
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e 7 permutes {1,2,...,n}.
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MacWilliams Extension Theorem

Theorem (MacWilliams, 1962)

An isometry over C C K" extends to an isometry over K".
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Isometry and MacWilliams Extension Theorem

MacWilliams Extension Theorem

Theorem (MacWilliams, 1962)

An isometry over C C K" extends to an isometry over K".

In other words, for an isometry f: C — K" there exists a permutation 7
and scalars A;'s such that

Vx € C, f(X) = ()‘1X7r(1)7 )‘2X7r(2)7 ceey )\nX7r(n))

S, x K" I Isom(C) — 0
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Isometry and MacWilliams Extension Theorem

Frobenius ring case

From the character theorycal proof of Ward & Wood, one deduces that

MacWilliams extension theorem works for the Hamming space over any
finite Frobenius rings.

[ H.N.Ward, J. A. Wood, Characters and the Equivalence of Codes, J.
Comb. Theory, Ser. A, (1996).
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Isometry and MacWilliams Extension Theorem

Homogeneous weight

The same holds for any homogeneous weight on a finite Frobenius ring :
e w(0)=0;
e If x and y are associate then w(x) = w(y);
@ There exists a constant ¢ such that for all principal ideal J,

> wly)=cl3].

yel

[4 M. Greferath and S. E. Schmidt, Finite-ring combinatorics and
MacWilliams's equivalence theorem, J. Combin. Theory Ser. A,

(2000).
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Homogeneous weight

The same holds for any homogeneous weight on a finite Frobenius ring :
e w(0)=0;
e If x and y are associate then w(x) = w(y);
@ There exists a constant ¢ such that for all principal ideal J,

> wly)=cl3].

yel

[4 M. Greferath and S. E. Schmidt, Finite-ring combinatorics and
MacWilliams's equivalence theorem, J. Combin. Theory Ser. A,
(2000).

Of course, MacWilliams extension works over the Z/(4) with its Lee weight

L(0)=0, L(l)=1(33)=1, 1L(2)=2.
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MacWilliams for Lee weight

@ g a positive integer
@ L the Lee weight over Z/(q).

0<r<gq/2;
L(r): r? —r—q/
g—r, q/2<r<aq.

Remark
Lee weight is not homogeneous for q > 4. J

Do we have a MacWilliams extension statement for the Lee weight 7

[@ A. Barra, Equivalence Theorems and the Local-Global Property,
ProQuest LLC, Ann Arbor, MI, 2012, Thesis (Ph.D.)-University of
Kentucky.
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Isometry and MacWilliams Extension Theorem

Known results, new results

In the last NCRA IV proceedings :

e g=2p+1, p prime (Folklore).
e g =4p+1 (Barra, 2012)
e g=2"or g=23" (Lens, 2015)

Despite all this progress, there are glaring gaps in our knowledge : does
extension theorem holds for linear codes over Z/(q) ?

Philippe Langevin (IMATH, Toulon) last revision June 11, 2017. 10 / 44



Isometry and MacWilliams Extension Theorem

Known results, new results

In the last NCRA IV proceedings :

e g=2p+1, p prime (Folklore).
e g =4p+1 (Barra, 2012)
e g=2"or g=23" (Lens, 2015)

Despite all this progress, there are glaring gaps in our knowledge : does
extension theorem holds for linear codes over Z/(q) ?

YES !
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Connection with classical tools

We have two ways to prove MacWilliams extension Theorem for the Lee
weight using classical results of

© Number Theory

@ Harmonic Analysis
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We have two ways to prove MacWilliams extension Theorem for the Lee
weight using classical results of

© Number Theory

@ Harmonic Analysis

The first works when the module g is primary, the second due to Sergey
Dyshko works for a general module.
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Isometry and MacWilliams Extension Theorem

Connection with classical tools

We have two ways to prove MacWilliams extension Theorem for the Lee
weight using classical results of

© Number Theory

@ Harmonic Analysis

The first works when the module g is primary, the second due to Sergey
Dyshko works for a general module.

| will sketch the proofs in the case of prime fields.
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Extension property holds for Lee weight

@ Deux analogues au déterminant de Maillet C. R. Acad. Sci. Paris vol.
Ser. I, 2016

[@ Ph. Langevin, J. Wood: The extension problem for Lee and Euclidean
weights Journal of Algebra Combinatorics Discrete Structures and
Applications Vol. 4 2 pp 207-217, 2017.

[@ Ph. Langevin, J. Wood: The extension theorem for the Lee and
Euclidean Weight over Z/ka Journal of Pure and Applied Algebra,
submitted 2016.

[@ S. Dyshko: The Extension Theorem for the Lee weight Code, Design
and Cryptography, submitted 2017 .
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e Extension property
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Isometry in general

@ Let R be a finite ring @ n a positive integer

@ w a weight function on R @ M a submodule of R"”
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Isometry in general
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Isometry in general

o Let R be a finite ring @ n a positive integer

@ w a weight function on R @ M a submodule of R"”
w is a real function such that w(r) = 0 iff r = 0.

The w-weight of x € R"

n

w(x) = Y w(x)

i=1

A linear map f: M — K" preserving the w-weight
Vx e M, w(x)=w(f(x))

is called a (linear) w-isometry over M.
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Extension property

U-monomial map

@ ¢; the canonical basis of R".

Again, an isometry over R" maps e; on Ajer(;) where \; € R and 7
permutes {1,2,...,n}, moreover :

Vt € R, w(t) = Ww(te,') = Ww(t)\,'eﬂ(,-)) = w(t)\,-)

thus A; lies in the symmetry group of w

Uw) = {AeR|VtER, wht)=uw(t)}
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U-monomial map

@ ¢; the canonical basis of R".

Again, an isometry over R" maps e; on Ajer(;) where \; € R and 7
permutes {1,2,...,n}, moreover :

Vte R, w(t)=wu(ter) = wo(tAieq(y)) = w(tA)
thus A; lies in the symmetry group of w
Uw) ={ e R|VteR, w(\t)=w(t)}
Definition (U-monomial transformation)
Given U a subgroup of R*, a monomial transformation with scalars in U.

S, x U"
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Extension Property

Definition (extension property)

We say that Extension Property holds for the pair (R,w) when each
w-isometry over M C R" extends to a U(w)-monomial transformation.
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Extension Property

Definition (extension property)

We say that Extension Property holds for the pair (R,w) when each
w-isometry over M C R" extends to a U(w)-monomial transformation.

@ EP holds for Hamming weight on Frobenius ring

@ EP holds for Homogeneous weight on Frobenius ring
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Extension Property

Definition (extension property)

We say that Extension Property holds for the pair (R,w) when each
w-isometry over M C R" extends to a U(w)-monomial transformation.

@ EP holds for Hamming weight on Frobenius ring

@ EP holds for Homogeneous weight on Frobenius ring

It looks difficult to decide if EP holds for an arbitrary weight function!
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Sommaire

e Wood criterion
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Preserving map

U be a subgroup of R*
r~sifandonlyifserU

Q a set of representatives of R\ {0}
o(x) =8{i|xi=r}

cU(x) i= i | xi ~ }
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Preserving map

U be a subgroup of R*
r~sifandonlyifserU

Q a set of representatives of R\ {0}
cr(x) =il x=r}

¢/ (x) =t{i [ x ~ r}

A linear map f: M — R" such that

Vxe C,VreQ cY(x)=cY(f(x)

r

is called a U-preserving map over M.
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Goldberg Extension Theorem

preserving map over K"

The U-preserving maps over K" are precisely the U-monomial
transformations.
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Goldberg Extension Theorem

preserving map over K"

The U-preserving maps over K" are precisely the U-monomial
transformations. )

Theorem (Goldberg, 1980)

A linear U-preserving map extends to U-monomial transformation.

Philippe Langevin (IMATH, Toulon) last revision June 11, 2017. 19 / 44



Goldberg Extension Theorem

preserving map over K"

The U-preserving maps over K" are precisely the U-monomial
transformations.

Theorem (Goldberg, 1980)

A linear U-preserving map extends to U-monomial transformation.

The same holds modular rings : Constantinescu, Heise, Honold (1996).

@ J. A. Wood.
Weight functions and the extension theorem for linear codes over
finite rings.
In R. C. Mullin and G. L. Mullen, editors, Finite fields: theory,
applications, and algorithms (Waterloo, ON, 1997), volume 225 of
Contemp. Math., pages 231-243. Amer. Math. Soc., Providence, RI,
1999.
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Extensibility Property (recall)

The symmetry group of w.
U(w) = {)\ e K* | Vx € K, w()\x) :w(x)} < K~

Extension Property

We say the extension property holds for the weight w when each
w-isometry of K" is the restriction of a U(w)-monomial map.
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Extensibility Property (recall)

The symmetry group of w.
U(w) = {)\ e K* | Vx € K, w()\x) :w(x)} < K~

Extension Property

We say the extension property holds for the weight w when each
w-isometry of K" is the restriction of a U(w)-monomial map.

From Goldberg Theorem, one gets a criterion.
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A sufficient condition for Extension Property

n

wo(x) =) _wlx) =Y w(re(x) = w(r)c! ().

i=1 rer ref2
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A sufficient condition for Extension Property

n

wo(x) =) _wlx) =Y w(re(x) = w(r)c! ().
i=1 rer reQ)
For all s € Q,
wo(xs) = > w(rs)er(x)
rer
=Y w(rs)e!(x)
reQ
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A sufficient condition for Extension Property

n

wo(x) =) _wlx) =Y w(re(x) = w(r)c! ().

i=1 rer ref2

For all s € Q, idem,

We(xs) = Zw(rs)c,(x) W (f(xs)) = we(f(x)s)
<" = > w(rs)cY(f(x))
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A sufficient condition for Extension Property

n

wo(x) =) _wlx) =Y w(re(x) = w(r)c! ().

i=1 rer ref2

For all s € Q, idem,

We(xs) = Zw(rs)c,(x) W (f(xs)) = we(f(x)s)
<" = > w(rs)cY(f(x))

Lemma

The invertibility of (w(rs))

Extension Property.
Philippe Langevin (IMATH, Toulon) last revision June 11, 2017. 21 / 44
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determinantal criterion

Let Q a set of repretentatives for the action of U := U(w).

Wy =1... w(rs) ... A, = det(W,)

r,seQ
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determinantal criterion

Let Q a set of repretentatives for the action of U := U(w).

Wy =1... w(rs) ... A, = det(W,)
r,seQ
Proposition (Wood)
If A, # 0 then Extension Property holds for the weight w. J
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determinantal criterion

Let Q a set of repretentatives for the action of U := U(w).

Wy =1... w(rs) ... A, = det(W,)
r,seQ
Proposition (Wood)
If A, # 0 then Extension Property holds for the weight w. J

Remark
One has an analogue criterion non commutative case. J
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determinantal criterion

Let Q a set of repretentatives for the action of U := U(w).

Wy =1... w(rs) ... A, = det(W,)
r,seQ
Proposition (Wood)
If A, # 0 then Extension Property holds for the weight w. J

Remark
One has an analogue criterion non commutative case. J

Numerical evidence for the Lee weight!
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Lee metric (Finite field case)

Sommaire

@ Lee metric (Finite field case)
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Lee metric (Finite field case)

Fourier coefficient

£ an odd prime
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£ an odd prime
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Lee metric (Finite field case)

Fourier coefficient

£ an odd prime
@ L the Lee metric of IFy

o U(L)={-1,+1}
o G:=Q=F,/{-1,+1} is cyclic of order 2.
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Lee metric (Finite field case)

Fourier coefficient

£ an odd prime

@ L the Lee metric of IFy
e U(L) ={-1,+41}
o G:=Q=F,/{-1,+1} is cyclic of order 2.

e G is the group of even (multiplicative) characters i.e. x(—1) = 1.
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Lee metric (Finite field case)

Fourier coefficient

£ an odd prime

@ L the Lee metric of IFy

e U(L) ={-1,+41}

o G:=Q=F,/{-1,+1} is cyclic of order 2.

e G is the group of even (multiplicative) characters i.e. x(—1) = 1.

By the Dedekind determinant formula

A=+ ]

x€G
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Lee metric (Finite field case)

Fourier coefficient

£ an odd prime

@ L the Lee metric of IFy

e U(L) ={-1,+41}

o G:=Q=F,/{-1,+1} is cyclic of order 2.

e G is the group of even (multiplicative) characters i.e. x(—1) = 1.

By the Dedekind determinant formula

A==+ [T
x€G

where T(x) = Y. L(s)x(s) is the Fourier coefficient of L at x.
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Lee metric (Finite field case)

Sophie Germain case

Proposition

Certainly, Extension Property holds for the Lee weight in the case of sure
prime module i.e. { =2p+ 1 with p prime.
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Lee metric (Finite field case)

Sophie Germain case

Proposition

Certainly, Extension Property holds for the Lee weight in the case of sure
prime module i.e. { =2p+ 1 with p prime.

@ (3 a generator of G
@ X a non trivial character
e ( := x(p) is a primitive p-th root of unity.
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Lee metric (Finite field case)

Sophie Germain case

Proposition
Certainly, Extension Property holds for the Lee weight in the case of sure
prime module i.e. { =2p+ 1 with p prime.

@ (3 a generator of G

@ X a non trivial character

e ( := x(p) is a primitive p-th root of unity.
The minimal polynomial of ( is

O (T)=TP 14 4+ T4 T
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Lee metric (Finite field case)

Sophie Germain case

Proposition

Certainly, Extension Property holds for the Lee weight in the case of sure

prime module i.e. { =2p+ 1 with p prime.

@ (3 a generator of G

@ X a non trivial character

e ( := x(p) is a primitive p-th root of unity.
The minimal polynomial of ( is

O (T)=TP 14 4+ T4 T
thus

-1
=~ ky ~k
L(x) = ) _L(B“)¢
k=0
does not vanish simply because L is not constant on G-

R
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Lee metric (Finite field case)

Two in one

We consider the Lee and Euclidean weights :

t, 0<t<¢/2
L(t) =
C—t, (2<t<{;

they share the same symmetry group
U:=UL)={-1,+1} = U(E).

Theorem

If £ is an odd prime then A, # 0 and Ag # 0.
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Lee metric (Finite field case)

Fourier coefficient of the Lee map

The quotient group

G = F < /{+1} = {1,2,...,(¢ - 1)/2}

is cyclic of order n:= (¢ —1)/2.
we want to prove :

VX € G, 0#T(X) =D L(s)x(s)-

seG

@ It is trivial when £ =2p + 1, p prime.
@ Barra proved the case ¢ = 4p + 1.
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Lee metric (Finite field case)

Fourier analysis

We identify G with the group of even characters of Fy :
G={xeF[x(-1)=1}

The Fourier coefficients of L and E are given by

L) =D Llx(x) = Y Lk)x(k) = > kx(k)

=re k<t/2 k<t/2
BE(x) = Y_BO)x(x) = > B(k)x(k)= > Kx(k)
=y k<t)2 k<t)2

last revision June 11, 2017. 28 / 44
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Lee metric (Finite field case)

Links between the determinants

It is easy to verify the following quadratic relation holds

L(2x)? — 41(x)? = (L(2x) — 2L(x)) ¢.
In other words
E(2x) — 4B(x) = (L(2x) — 2L(x)) L.

On spectra
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Lee metric (Finite field case)

Links between the determinants

It is easy to verify the following quadratic relation holds

L(2x)? — 41(x)? = (L(2x) — 2L(x)) ¢.
In other words
E(2x) — 4B(x) = (L(2x) — 2L(x)) L.

On spectra

Scholie
Let r be the smallest positive integer such that 2" = +1 mod /.

/—

=1 =1
(2!’ + 1) 2r AE = f 2 AL‘

Philippe Langevin (IMATH, Toulon)
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Lee metric (Finite field case)

basic fact for non trivial even characters

@ 1 £ x even and not trivial

Ix)=2 > x(k) =0

k<t/2
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Ix)=2 > x(k) =0

k<t/2

The first generalized Bernoulli's number vanishes too
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Lee metric (Finite field case)

basic fact for non trivial even characters

@ 1 £ x even and not trivial

Ix)=2 > x(k) =0

k<t/2

The first generalized Bernoulli's number vanishes too

We want to prove that
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Lee metric (Finite field case)

Consequence of T.(x) = 0 on the 2nd Bernoulli's number

Let us observe the consequence of

L(x) =0=%(x), 1#x, x(-1)=1,

on the second generalized Bernoulli's number

1 y4
=5 Z — (k) x(k

20B,(x) = 2E(x) — 2L(x)¢ + 1(x)

= Zero.
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1 y4
= 5 Z — (k) x(k
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= Zero.

Philippe Langevin (IMATH, Toulon) last revision June 11, 2017. 31/ 44



Lee metric (Finite field case)

Contradiction with classical fact from number theory

In number theory, there is a long story concerning the analytic
continuation of the Dirichlet serie

— x(n)

L(s,x) =
n=1

Philippe Langevin (IMATH, Toulon) last revision June 11, 2017. 32/ 44



Lee metric (Finite field case)

Contradiction with classical fact from number theory

In number theory, there is a long story concerning the analytic
continuation of the Dirichlet serie
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whence the determinants A, and A do not vanish.
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Lee metric (Finite field case)

primary case

Corollary (extension property)

The Lee and Euclidean isometries are the restriction of
{—1,+1}-monomial transformations.
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Lee metric (Finite field case)

primary case

Corollary (extension property)

The Lee and Euclidean isometries are the restriction of
{—1,+1}-monomial transformations.

The same approach works in the case of a primary module

but not for a composite module!
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Additive Fourier coefficient

The additive Fourier coefficient of w :

wH(3) = 3 wlx)u(ax)

XEF[

where p is the standard additive character of .

Philippe Langevin (IMATH, Toulon) last revision June 11, 2017. 35/ 44



Additive Fourier coefficient

The additive Fourier coefficient of w :

wH(3) = 3 wlx)u(ax)

XEF[

where p is the standard additive character of .

Note that U(w*) = U(w) and

D wHa) =L xw(0)=0

aclky
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change of determinant

Since w(0) =0,

w*(x) = T(\)B(X)

where 7(x) is a Gauss sum

r,s€f ™ /+1
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change of determinant

Since w(0) =0,

w*(x) = T(\)B(X)

where 7(x) is a Gauss sum

r,s€f ™ /+1

A, =0« det(AV) =0
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Dyshko criterion

Levy-Desplanques dominant criterion

A strictly diagonally dominant n x n-matrix (aj;) i.e.

Vi, ail > lajl

i#
is not singular.
Corollary
If
Vr#0, w*(r)<0 and w*(0) < —2|U(w)| x w*(1)
then A, # 0.
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sketch

We consider the matrices

WE=1... w*(rs)

w

r,s€Fy* /£1

Philippe Langevin (IMATH, Toulon)

W(r/s)

rs€f” /+1

w*(1) is on the diagonal
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sketch

We consider the matrices

w

WE=1... w*(rs)

r,s€Fy* /£1

D)= 3wt ()] = —w

1#£reQ

Philippe Langevin (IMATH, Toulon)

W(r/s)

rs€f” /+1
w*(1) is on the diagonal

W)+ Y W)

1#4reQ
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sketch

We consider the matrices

w

W= ... wirs) ... W (r)s)

r,SGFgX/il ’ I’,SGF@X/il
w*(1) is on the diagonal

WD = Y ()l =t 1)+ Y W)

1#£reQ 1#reQ

The sum of the Fourier coefficients w*(0) + §U(w) x Y _,cqw*(r) vanishes.
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sketch

We consider the matrices

w

W= ... wirs) ... W (r)s)

r,SGFgX/il ’ I’,SGF@X/il
w*(1) is on the diagonal

WD = Y ()l =t 1)+ Y W)

1#£reQ 1#reQ

The sum of the Fourier coefficients w*(0) + §U(w) x Y _,cqw*(r) vanishes.

* * * _W*(O)
|lw™(1)] = |w*(r)] = —2w™(1) +
Py U
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Additive Fourier coefficient of the Lee map

e 0 r</ o n:==41 o t:=27r
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Additive Fourier coefficient of the Lee map

e 0<r<t on;:’f*Tl ,t::%
‘é_l . n
L*(r) = ZL(k)e't =2% coskt =2n(Dy(t) — Fa(t))
k=0 k=1

where D, is the Dirichlet kernel
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Dyshko criterion

Additive Fourier coefficient of the Lee map

e 0<r</ on;:f*Tl ot-:%
-1 ] n

L*(r) = ZL(k)e't = 2Zcos kt = 2n(Dp(t) — Fa(t))
k=0 k=1

where D, is the Dirichlet kernel

1 LA 1 . sin(n+ 1)t
Dn(t) =5t Z e'kt—2+Zcoskt—(2)—
k=—n

and F,, the Fejér kernel
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Dyshko criterion

Additive Fourier coefficient of the Lee map

e 0<r<t °on=51 o t:=2r
-1 ) n

L*(r) = ZL(k)e't =2% coskt =2n(Dy(t) — Fa(t))
k=0 k=1

where D, is the Dirichlet kernel

1 I 1 < sin(n+ 3)t
Dn(t) :== = ikt — — Kt — T 2)0
(1) 2+kzne 2+kz_:1coS 2sin Lt

and F,, the Fejér kernel

n—1 n . 2
1 1 1 k 1 [sin2t
Fa(t) ::;E Dk(t)zi—l—; (1—n)coskt:< 2 )
k=0
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Lee weight satisfies the two conditions

e 0<r</

-1
@ n:i= 5

First condition :

L*(r) = —2nF,( 7 )<0
Second condition :
=1 2
in _2_2m
_ar(1) =4 21
sSin 57
and
-1
2 1
L*(0)=2) k= Z(zz —-1)
k=1
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second condition

We have to prove

—4L*(1) > 1*(0)
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We have to prove

and now it is very easy !
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ﬁ
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Dyshko criterion

second condition

We have to prove

and now it is very easy !

Indeed,

4 2 2
%56 ~ —41*(1) and L*(0) ~ =¢

Philippe Langevin (IMATH, Toulon)

—4L*(1) > 1*(0)

ﬁ
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Dyshko criterion for modular ring

e consider the ring Z/(q) e b a divisor of g.

@ w a weight function @ write g = ab

Philippe Langevin (IMATH, Toulon) last revision June 11, 2017.

42 / 44



Dyshko criterion for modular ring

e consider the ring Z/(q) e b a divisor of g.

@ w a weight function @ write g = ab

Consider the additive Fourier coefficients of the map x — w(bx)

Fa(t) = ) w(bx)ey

x€Z/(a)
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Dyshko criterion for modular ring

e consider the ring Z/(q) e b a divisor of g.

@ w a weight function @ write g = ab

Consider the additive Fourier coefficients of the map x — w(bx)

Fa(t) = ) w(bx)ey

x€Z/(a)

Wow) = |... w(rs)

rS€Z/(2)*/Galw)
where Go(w) = {h € Z/(a)* |Vt € Z/(a) wt(bht) = w(bt)}.
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Dyshko criterion

Dyshko criterion for modular ring

Theorem (Dyshko)

Let w: Z/(q) — C be a weight function. If for all 1 # a | q the matrix
W, (w) is non singular and

Vhe Gy(w) dg€Gy(w) g=h moda

then Extension Property holds for the weight w.

Corollary

For every integer q > 2 the Extension Property of the Lee weight holds
over the ring Z/(q).
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Dyshko criterion
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